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I prove that the thrust force per input power (for all three EM-Drive theo-
ries) scales like the square root of any geometrical dimension, for constant
resistivity and magnetic permeability of the interior wall of the cavity and for
constant geometrical ratios, constant medium properties and for the same
mode shape. To maximize the thrust per input power, according to all three
theories the most efficient EM-Drive would be as large as possible, this be-
ing due to the fact that the quality of factor of resonance Q (all else being
equal) scales like the square root of the geometrical dimensions. Small cav-
ity EM-Drives (all else being equal) are predicted to have smaller quality of
resonance Q and therefore smaller thrust force/input power.

1. Thrust per power of EM Drive compared to a photon rocket

Here I briefly describe the thrust per power input claimed by various authors for the
EM-Drive and its comparison to the one of a photon rocket. I start with the definition
of Power P (t) as the time derivative of work W , and therefore equal to the vector dot
product of force times velocity,

P (t) = dW

dt
= ~F · ~v (1)

For an ideal photon rocket with a perfectly collimated photon beam, the exhaust velocity
(not the spaceship velocity!) is the speed of light c and therefore, Fc = Pin, where Pin
is the power input into the exhaust (“power input” here only stands for the power at
this late stage, notice that there may be further losses at earlier stages from the power
plant, etc.). Therefore, for an ideal photon rocket, the “thrust” force per input power
is, (

F

Pin

)
photonRocket

= 1
c

(2)

Furthermore: For rockets exhausting particles-with-mass at speeds much lower than
the speed of light, for example ion thrusters, this ratio is 2/v instead of 1/c, where
v is the speed of the particle-having-mass (as propellant). Particles-with-mass, unlike
photons, need to be accelerated to the exhaust speed. The reason for the factor of 2 is
because kinetic energy of a massive low speed particle is E = (1/2)mv2 instead of the
energy of a photon E = mc2. Therefore, the efficiency (F/Pin) for ion thrusters is much
larger than the one for photon rockets since v � c, and hence 2/v � 1/c and that is
why this type of photon rocket has not seen, and is not envisioned to have, practical use.

Interestingly the “thrust” force per input power for the EM Drive, according to all three
different theories ( McCulloch, Shawyer and “Notsosureofit” ) can be expressed similarly
as:
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(
F

Pin

)
EM-Drive

= Qg

c
(3)

where Q is the quality factor of resonance (an inverse measure of damping) and g is a
dimensionless factor due to geometry, relative magnetic permeability, relative electric
permittivity and mode shape. The specific form of g depends on the specific theory of
each author. So, the force per input power for an EM Drive is predicted to be superior
to a photon rocket as follows:

(
F

Pin

)
EM-Drive

/

(
F

Pin

)
photonRocket

= Qg (4)

In other words, the theoretical outperformance of the EM-Drive is predicted to be due
to just the quality of resonance Q and the dimensionless factor g. For the purpose
of this discussion I will avoid dealing with the strange consequences of these theories
regarding conservation of momentum and conservation of energy issues inherent to the
concept of proposing a closed resonant electromagnetic cavity for space propulsion.

2. The specific form of the factor g for different theories

McCulloch [1], has presented a number of simple formulas for the EM-Drive, all having
the general form as Eq.(3) above. The simplest of which has the following definition for
the dimensionless factor g,

gMcCulloch =
(
L

Ds
− L

Db

)
(5)

where L is the length of the truncated cone, measured perpendicular to the end faces,
along the axis of axial symmetry of the cone. Ds is the diameter of the small end of
the truncated cone and Db is the diameter of the big end of the truncated cone. So, it
is evident that for this formula from McCulloch, the factor g is a dimensionless factor
that only depends on the geometrical ratios L/Ds and L/Db. It is also obvious that
if one scales the EM-Drive geometry, such that the geometrical ratios L/Ds and L/Db

are kept constant, that the dimensionless factor g will remain constant in McCulloch’s
equation.

Shawyer [2], has presented a formula for the EM-Drive where the dimensionless factor
g is defined as follows: gShawyer = 2Df where Df is a dimensionless factor called the
Design Factor by Shawyer, and where Df is a function of the diameter-to-length ratios
and in addition is also a function of the relative magnetic permeability µrmedium

and
the relative electric permittivity εrmedium

, as well as the natural frequency of resonance
and its associated mode shape (with associated mode shape numbers m,n, p),

gShawyer = gShawyer

(
L

Ds
,
L

Db
, µrmedium

, εrmedium
,m, n, p

)
(6)

where the diameters of the truncated cone appear explicitly in his formula for the design
factor and where the length and the mode shape numbers appear only implicitly be-
cause the design factor is dependent on the natural frequency at which resonance with
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a particular mode shape occurs. It is simple to show that if one scales the EM-Drive
geometry such that the geometrical ratios L/Ds and L/Db, and the medium properties
µrmedium

, εrmedium
are kept constant, and the mode shape is kept the same, that the

dimensionless factor g will remain constant in Shawyer’s equation.

Notsosureofit [3], has presented a more sophisticated formula for the EM-Drive, with
explicit dependence on the mode shape, where the dimensionless factor g is defined as
follows,

gNotsosureofit =
(
ψ2
mn

4π3

)(
c

fmnp

)3 1
L

(
1
D2
s

− 1
D2
b

)
(7)

where ψmn = xmn (the nth zeros of the cylindrical Bessel function (of the first kind)
Jm(x)) for transverse magnetic (TM) modes, and ψmn = x′mn (the nth zeros of the
first derivative J ′m(x) of the cylindrical Bessel functions (of the first kind) Jm(x) ) for
transverse electric (TE) modes.

Side note: This link [4], is an excellent source for the numerical values of the nth roots
xmn and x′mn of Jm(x) and J ′m(x), respectively, for the following values of m and n:
m < 11 and n < 6 .

Therefore, it can be shown that the g factor in Notsosureofit’s hypothesis is a function
of the geometrical ratios, the medium properties and the mode shape of resonance:

gNotsosureofit = gNotsosureofit

(
L

Ds
,
L

Db
, µrmedium

, εrmedium
,m, n, p

)
(8)

which is the same form of nondimensional dependence as in Shawyer’s gShawyer. Ex-
actly how this is so will be shown in detail in the next section.

3. Natural frequency scaling

For simplicity, since the truncated cone resonant cavities tested by NASA, Shawyer,
Tajmar, and others have all been close to a cylindrical cavity, I will derive the scal-
ing relationship for the natural frequencies of a cylindrical cavity, but this can also
be done with the more complicated equations for a truncated conical cavity. For an
electromagnetically resonant cylindrical cavity the functions are: the cosine of the lon-
gitudinal coordinate z, the cosine of the cylindrical polar angular coordinate ϑ and
the cylindrical Bessel functions Jm(κmn %) of the cylindrical polar radial coordinate
% (where κmn = ψmn

R is the angular wave number associated with the circular cross-
section of the cylinder, which for p 6= 0, in other words, for mode shapes with elec-
tromagnetic field not constant in the axial direction z, is different from the angular
wave number kmnp = ωmnp

√
µrmedium

εrmedium
/c for the cylindrical cavity). For an

electromagnetically resonant truncated conical cavity instead, the functional depen-
dence is expressed in terms of cosine functions in the azimuthal angle direction φ,
associated Legendre functions Pmn in the spherical polar angle (also called zenith an-
gle) direction θ, and spherical Bessel functions 1√

r
J±(n+1/2)(kmnpr) ([5] and[6]). (Here

kmnp = ωmnp
√
µrmedium

εrmedium
/c is the angular wave number and r is the spherical

radial coordinate directed along the generatrix, which for zero spherical polar angle θ
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coincides with the longitudinal axis z of symmetry of the cone, which is perpendicular
to the direction of the radial polar coordinate % for a cylinder. Hence it is important
to distinguish between the spherical radial coordinate r and the cylindrical polar radial
coordinate % directions: they are very different directions. Also notice that the cylin-
drical Bessel function Jm(κmn %) for the cylinder is only associated with mode shape
numbers m and n of the circular cross-sections perpendicular to the longitudinal axis
z of the cylinder, and hence independent of mode shape number p, while the spherical
Bessel function 1√

r
J±(n+1/2)(kmnpr) for the truncated cone with spherical ends is asso-

ciated with all mode shape numbers m, n and p of the entire truncated cone, including
the trapezium shaped plane sections perpendicular to the azimuthal direction φ of the
truncated cone).

The reason why all EM-Drive experiments have been performed up to now with
EM-Drive geometries close to a cylindrical cavity is because experimenters have tried
to follow Shawyer’s prescription that, for a given frequency and mode shape, the small
diameter of the truncated conical cavity should be larger than the diameter of an open
cylindrical waveguide at the cut-off frequency for that mode shape (although the EM-
Drive is a closed cavity, and not an open waveguide, and it is known that cut-off does
not take place in truncated conical cavities under the same conditions). For practical
applications to cavities resonating at the desired mode shapes: TE012 and TE013, this
prescription forbids geometries of truncated cones where the small diameter is much
different from the big diameter. Therefore it turns out that one can use a mean radius,
R = (Ds + Db)/4 to model the truncated cone as a cylindrical cavity, having natural
frequencies fmnp

fmnp = c

R
amnp (9)

angular wave number kmnp = 2π amnp
√
µrmedium

εrmedium
/R (radians per unit length),

wavelength λmnp = R/
(
amnp

√
µrmedium

εrmedium

)
, and where c is the speed of light, R

is the previously defined mean radius and where m,n, p are the so called “mode shape
numbers” defining the mode shape, where for a cylinder, m is the integer related to the
circumferential direction (cylindrical polar angle ϑ direction), n is the integer related
to the cylindrical polar radial direction (% direction) and p is the integer related to the
longitudinal axial direction (z cylindrical polar axis). From the closed-form solution for
an electromagnetically resonant cylindrical cavity (for example Eq.(7.56) of Collin[7],
or Eqs.(9.39a) and (9.45) of Balanis[8]) it follows that:

amnp =

√
(ψmn/π)2 + (pR/L)2

4µrmedium
εrmedium

(10)

It is also trivial to show that since the mean radius is R = (Ds+Db)/4 then the ratio of
the mean radius to the length can be expressed in terms of the geometrical ratios L

Ds
,

L
Db

:

R

L
= 1

4

(
Ds

L
+ Db

L

)
hence (11)

amnp = amnp

(
L

Ds
,
L

Db
, µrmedium

, εrmedium
,m, n, p

)
for constant geometrical ratios L

Ds
, L
Db

, constant medium properties µrmedium
, εrmedium

,
and for the same mode shape m,n, p, amnp will remain constant. Since the frequency
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scales like c
R , and R divided by L, or Ds, or Db can be expressed in terms of the

geometrical ratios L
Ds

, L
Db

, it follows that the frequency fmnp scales like the inverse of
any geometrical dimension c

L , c
Ds

or c
Db

and the geometrical ratios L
Ds

, L
Db

, the medium
properties and the mode shape:

fmnp = c

R
amnp

(
L

Ds
,
L

Db
, µrmedium

, εrmedium
,m, n, p

)
= fmnp

(
c

L
,
L

Ds
,
L

Db
, µrmedium

, εrmedium
,m, n, p

)
= fmnp

(
c

Ds
,
L

Ds
,
L

Db
, µrmedium

, εrmedium
,m, n, p

)
= fmnp

(
c

Db
,
L

Ds
,
L

Db
, µrmedium

, εrmedium
,m, n, p

)
(12)

To illustrate this for Notsosureofit’s dimensionless factor, substituting Eq. (9) into
Eq. (7) it follows that:

gNotsosureofit =
(
ψ2
mn

4π3

)(
1

amnp

)3
R

L

((
R

Ds

)2
−
(
R

Db

)2
)

(13)

therefore the dimensionless factor gNotsosureofit depends on the ratio of the mean radius
R to the length L and on the square of the ratio of the mean radius R to the diameters
Ds and Db. Since the ratio of the mean radius R to the length L or to the diameters
Ds, Db of the EM-Drive can be expressed in terms of the geometrical ratios L

Ds
, L
Db

:

R

L
= 1

4

(
Ds

L
+ Db

L

)
(14)

(
R

Ds

)2
= 1

16

(
1 +

L
Ds

L
Db

)2

(
R

Db

)2
= 1

16

(
1 +

L
Db

L
Ds

)2

then it follows that the g factor in Notsosureofit’s hypothesis is a function of the geo-
metrical ratios, the medium properties and the mode shape of resonance:

gNotsosureofit = gNotsosureofit

(
L

Ds
,
L

Db
, µrmedium

, εrmedium
,m, n, p

)
(15)

Therefore for constant geometrical ratios L
Ds

, L
Db

, constant medium properties µrmedium
,

εrmedium
, and for the same mode shape m,n, p, the dimensionless factor g will remain

constant. It is trivial to show the same result for Shawyer’s design factor, and hence
for the dimensionless factor g in Shawyer’s expression. So, in general I can state that
all theoretical expressions, McCulloch’s, Shawyer’s and Notsosureofit’s, are such that
the dimensionless factor g will remain constant for constant geometrical ratios L

Ds
, L
Db

,
constant medium properties µrmedium

, εrmedium
, and for the same mode shape m,n, p.
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4. Quality of resonance (Q) scaling

The quality of resonance factor (Q) is defined as follows:

Q
def= 2π EnergyStored

EnergyDissipatedPerCycle
def= ωmnp

EnergyStored
PowerLoss

(16)

where:

ωmnp = resonant angular frequency
= 2πfmnp

fmnp = resonant frequency with mode shape numbers m,n, p

EnergyStored =
∫

ElectromagneticEnergyDensity dV

PowerLoss = ωmnpδ

2

∫
ElectromagneticEnergyDensity dA

= Rs
µwall

∫
ElectromagneticEnergyDensity dA

= ρ

µwallδ

∫
ElectromagneticEnergyDensity dA

Rs = surface resistance

= ρ

δ
ρ = resistivity of the interior wall of the EM Drive resonant cavity

µwall = magnetic permeability of the interior wall of EM Drive
= µ0µrwall

δ = skin depth (penetration depth of the electromagnetic energy)
V = interior volume of EM Drive resonant cavity
A = interior surface of EM Drive resonant cavity

In general, for arbitrary frequencies, the skin depth is:

δ =
√

2ρ
ωµwall

(√
1 + (ρωεwall)2 + ρωεwall

)
(17)

where εwall = ε0εrwall
= electric permittivity of the interior wall of the EM-Drive

resonant cavity. At angular frequencies ω much below 1/(ρεwall), for example, in the
case of copper, for frequencies much below exahertz (109 GHz, the range of hard X-rays
and Gamma rays), the skin depth can be expressed as follows,

δ =
√

2ρ
ωµwall

(18)

Now, at resonance ω = ωmnp, using the fact that

PowerLoss = ωmnpδ

2

∫
ElectromagneticEnergyDensity dA
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substituting into Eq. (16) definition for the quality factor of resonance, one immediately
obtains,

Q = 2
δ

∫
Electromagnetic Energy Density dV∫
Electromagnetic Energy Density dA

(19)

Alternatively one can arrive at the same result, using the formula for power loss that
depends on the surface resistance Rs,

PowerLoss = Rs
µwall

∫
ElectromagneticEnergyDensity dA

= ρ

µwallδ

∫
ElectromagneticEnergyDensity dA

and substituting this into the definition for the quality factor of resonance Eq. (16),
one gets,

Q = ωmnpµwall
Rs

∫
Electromagnetic Energy Density dV∫
Electromagnetic Energy Density dA

(20)

= ωmnpµwallδ

ρ

∫
Electromagnetic Energy Density dV∫
Electromagnetic Energy Density dA

and using the fact that at angular frequencies ω much lower than 1/(ρε) the angular
frequency ω is a function of the square of the skin depth δ,

ω = 2ρ
µwallδ2 (21)

it is straightforward to show that the quality of resonance Q is:

Q = 2
δ

∫
Electromagnetic Energy Density dV∫
Electromagnetic Energy Density dA

(22)

the electromagnetic energy density integrated over the cavity volume, divided by the
electromagnetic energy density integrated over the cavity surface area, divided by the
skin depth.

Skin depth scaling: At frequencies much below 1/(ρε) the skin depth at a resonant
frequency fmnp can be expressed as

δ =
√

ρ

µwallπfmnp
(23)

Substituting the expression for frequency Eq. (9), fmnp = c
Ramnp, into the above skin

depth equation, results in the following expression:

δ =
√
R

√
ρ

µwall π c amnp
(24)

Using the previously derived expression for amnp Eq. 11 and Eq. 14 for the dimensional
ratios, one concludes that the skin depth δ scales like the square root of any geometrical
dimension, for constant resistivity ρ and magnetic permeability µwall of the interior
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wall of the cavity, for constant geometrical ratios L
Ds

, L
Db

, constant medium properties
µrmedium

, εrmedium
and for the same mode shape m,n, p. In other words, for increasing

dimensions of the cavity, preserving all geometrical ratios, and keeping medium proper-
ties constant and for the same mode shape, the skin depth will increase with the square
root of the dimension, while the frequency will decrease, as the inverse of the dimension.

Quality of resonance (Q) scaling: Having determined the scaling law for the skin
depth, what now remains to be shown is the scaling for the energy integral ratio in the
expression for Q,

Q = 2
δ

( ∫
Electromagnetic (EM) Energy Density dV∫
Electromagnetic (EM) Energy Density dA

)
(25)

The expressions under the integrals are dependent on each mode shape, as the elec-
tromagnetic energy distribution depends on mode shape, of course. However, notice
that the lowest mode shapes (those with low values of mode shape numbers m,n, p, for
example TE012, TE013, TM212) have been of interest in the EM Drive experiments
so far. So, for simplification purposes assume that the distribution of the electromag-
netic field is of low order, and hence not that much variable throughout the cavity, for
low m,n, p number mode shapes (for example m=0, associated with the mode shape
numbers TE012 and TE013 used by Shawyer, means a constant distribution in the
azimuthal circumferential direction of the cavity). Under this assumption one can (for
approximation purposes) take the energy density out of the volume and surface integrals:

(∫
EM Energy Density dV∫
EM Energy Density dA

)
∼

(
EM Energy Density
EM Energy Density

)(∫
dV∫
dA

)
(26)

∼ InteriorVolume
InteriorSurfaceArea

∼ πR2L

2πR(R+ L)

∼ R

2(1 +R/L)

and substituting this and the previously found scaling law for the skin depth, into the
expression for the quality of resonance factor Q, leads to:
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Q = 2
δ

(∫
EM Energy Density dV∫
EM Energy Density dA

)
(27)

∼ 2√
R
√
ρ/(µwall π c amnp)

R

2(1 +R/L)

∼
√
R

1
(1 +R/L)

√
µwall π c amnp

ρ

∼
√
L

√
Ds

L + Db

L

2(1 + 1
4
(
Ds

L + Db

L

)
)

√
µwall π c amnp

ρ

∼
√
Ds

√
1 +

L
Ds
L

Db

2(1 + 1
4
(
Ds

L + Db

L

)
)

√
µwall π c amnp

ρ

∼
√
Db

√
1 +

L
Db
L

Ds

2(1 + 1
4
(
Ds

L + Db

L

)
)

√
µwall π c amnp

ρ

where the dimensionless mode shape factor amnp is:

amnp =

√
(ψmn/π)2 + (pR/L)2

4µrmedium
εrmedium

=

√
(ψmn/π)2 + (p4

(
Ds

L + Db

L

)
)2

4µrmedium
εrmedium

Therefore one concludes that the quality of resonance Q scales like the square root of
any geometrical dimension L, Ds or Db, for constant resistivity ρ and magnetic perme-
ability µwall of the interior wall of the cavity and for constant geometrical ratios L

Ds
, L
Db

,
constant medium properties µrmedium

, εrmedium
, and for the same mode shape m,n, p.

In other words, for increasing dimensions of the cavity, preserving all geometrical ra-
tios, keeping medium properties constant and for the same mode shape, the quality of
resonance Q will increase with the square root of the dimension, also the skin depth
will increase with the square root of the dimension, while the frequency will decrease,
as the inverse of the dimension.

Furthermore, I previously proved that all three theories for the EM Drive (McCulloch,
Shawyer and Notsosureofit ) have expressions for the force/input power proportional to
the quality of factor Q times a dimensionless factor g,

(
F

Pin

)
EM-Drive

/

(
F

Pin

)
photonRocket

= Qg(
F

Pin

)
EM-Drive

= Qg

c
(28)

and I previously proved that the dimensionless factor g (for all three theories: McCul-
loch, Shawyer and Notsosureofit) remains perfectly constant for constant geometrical
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ratios, constant medium properties µrmedium
, εrmedium

and for the same mode shape
m,n, p. Therefore one concludes that the force per input power (for all three theories:
McCulloch, Shawyer and Notsosureofit) scales like the square root of any geometrical
dimension, for constant resistivity ρ and magnetic permeability µwall of the interior wall
of the cavity and for constant geometrical ratios L

Ds
, L
Db

, constant medium properties
µrmedium

, εrmedium
and for the same mode shape m,n, p.

In other words, to maximize the force per input power, according to all three theories:
(McCulloch, Shawyer and Notsosureofit) the most efficient EM-Drive would be as large
as possible, this being due to the fact that the quality of factor of resonance Q (all
else being equal) scales like the square root of the geometrical dimensions. Small cavity
EM-Drives (all else being equal) are predicted to have smaller quality of resonance Q
and therefore smaller thrust force/input power.

It is not clear whether this has been known to EM-Drive experimenters, given the fact
that the recent experiments by Prof. Tajmar at TU Dresden, Germany, (under advice
from Roger Shawyer according to the report [9]) were performed with a much smaller
EM-Drive than previously tested by Shawyer and by NASA [10], and the fact that
there are several EM-Drive researchers discussing really tiny EM-Drives (as the group
in Aachen, Germany [11]) for use in CubeSats. Such EM Drives are predicted to be less
efficient, having lower thrust force/input power, if the claimed thrust is not an experi-
mental artifact.

5. Numerical verification analysis

The scaling law for the EM-Drive discussed in the previous sections is verified numer-
ically using the exact solution for a truncated cone in terms of spherical Bessel and
associated Legendre functions, using Wolfram Mathematica, and the experimental re-
sults from NASA [10].

NASA’s truncated cone dimensions and material

Db = 11.01 inch = 0.279654 m
Ds = 6.25 inch = 0.15875 m
L = 9.00 inch = 0.2286 m
ρ = 1.71× 10−8 ohm meter (wall material: copper alloy 101)
µrwall = 0.999991

Since the exact solution assumes spherical ends, while NASA’s truncated cone ex-
periment has flat ends, the spherical radii r1 and r2 are calculated as the mean value
of the radii to a) the intersection of the ends with the lateral conical walls and b)
the top of the dome. From analysis of the problem and verification using numerical
analysis (comparison with COMSOL FEA solutions for a large number of examples) I
have determined that this mean value is an excellent approximation to the solution of
Maxwell’s equations for a truncated cone with flat ends. These input parameters result
in the following values (in SI units) for the spherical radii r1 and r2:

r1 = 0.305316 m
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r2 = 0.537845 m

and for the truncated cone half angle value at the conical wall θw (the spherical polar
angle measured from the axis of symmetry z of the cone to the conical wall):

θw = 14.8125 degrees

Experimental measurement by NASA (for mode shape TE012):

f012 = 2.168 GHz

Output (exact solution output results for mode shape TE012):

f012 = 2.16467 GHz
δ = 1.41457 micrometers
Q = 78, 642.4

Scaled geometry: ten times larger than NASA’s geometry

Input

Db = 110.1 inch = 2.79654 m
Ds = 62.5 inch = 1.5875 m
L = 90.0 inch = 2.286 m
ρ = 1.71× 10−8 ohm meter (wall material: copper alloy 101)
µrwall = 0.999991

Output (exact solution results for mode shape TE012):

f012 = 0.216467 GHz
δ = 4.43121 micrometers
Q = 251, 049

frequency scaling: (2.16467231443426289/2.16467231443426678)/10 = 1
Q scaling: (78642.44767279371/251049.34868706256)/

√
10 = 0.990599

Scaled geometry: ten times smaller than NASA’s geometry

Input

Db = 1.101 inch = 0.0279654 m
Ds = 0.625 inch = 0.015875 m
L = 0.900 inch = 0.02286 m
ρ = 1.71× 10−8 ohm meter (wall material: copper alloy 101)
µrwall = 0.999991

Output (exact solution output results for mode shape TE012):

f012 = 21.6467 GHz
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δ = 0.443121 micrometers
Q = 25, 104.9

frequency scaling: (2.16467231443426289/2.16467231443426710) ∗ 10 = 1
Q scaling: (78642.44767279371/25104.934868706456)/

√
10 = 0.990599

The following is confirmed: when using the exact solution for resonance of a trun-
cated conical cavity, for constant resistivity and magnetic permeability of the interior
wall of the cavity and for constant geometrical ratios, constant medium properties and
for the same mode shape (TE012): 1. the frequency scales (exactly) like the inverse of
any geometrical dimension, 2. therefore the skin depth scales (exactly) like the square
root of any geometrical dimension, 3. the quality of resonance (Q) scales approximately
like the square root of any geometrical dimension, within 1% accuracy due to the ap-
proximation that the electromagnetic energy density is approximately constant through
the interior volume and through the interior surface area of the cavity (this approxi-
mation is good for a low mode like TE012 but is expected to gradually degrade with
higher mode shape numbers).
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